赤外線画像診断に基づくエンドミル加工現象の解明

Elucidation of End-Mill Process Based on Infrared Image Diagnostic

(山本金属製作所) ○新堂 正俊 正 松田 亮 (山本金属製作所)

īF. 古木 辰也 (同志社大) īE. 廣垣 俊樹 (同志社大)

Masatoshi SHINDOU, Yamamoto Metal Technos Co.,Ltd., 4-7,Setoguti 2-chome,Hirano-ku,547-0034 Osaka Japan

Ryo MATSUDA, Yamamoto Metal Technos Co., Ltd.,

Tatsuya HURUKI, Toshiki HIROGAKI and Eiichi AOYAMA, Doshisha University, Kyotanabe-shi, Kyoto, 610-0321

近年, 難削材加工を定量的に評価するための技術開発のニ ーズが増大している.一般に被削性を評価する指標として, ①工具摩耗,②切削抵抗,③切削温度,④切りくず処理性な どが重要とされている. 例えば山根らは、材料の物性値より 難削性の度合いを示す指標を提案したりしている1).一方,切 削加工の研究開発の現場では切削力や切削温度を手掛かりに して加工条件や方法を探索する場合が多い. 切削力に関して は、圧電式のセンサーの普及により比較的容易に評価が可能 になってきた. しかしながら, 切削温度に関してはメーカの 研究開発の現場で容易に評価することが難しい状況にある. そこで著者らは,赤外線画像による高精度で高能率なエンド ミル加工現象の評価手法を提案20している. 本報では, 赤外線 モニター画像による工具表面温度の解析を行った. また新た に無線式温度計測ツールを開発して計測結果との比較につい ても考察した.

2. 実験方法および提案する手法 2.1 工具表面温度の計測

エンドミル加工の側面切削 (ダウンカット時) を対象に する. 図1に示すように、赤 外線画像は被削材の進行方向 の法線に対して θ =150° 方向 から赤外線サーモグラフィで 撮影した. 撮影の鉛直方向(Z 方向)の高さは、エンドミル と同一(真横)とした.撮影 に用いた赤外線波長帯は 10μ m で, 15 枚/s の連写にてモニ ターした.

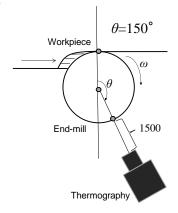


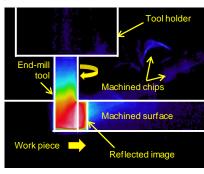
Fig.1 Monitoring method

工具表面の赤外線放射率は, コーティングの種類により変化

するため, 事前に熱電対で温度計測しながら工具を加熱して 校正している.

2.2工具内部温度の計測

ホルダ内部にマイコン を配置し,加工中工具 から得られる情報をワ イヤレスでデータ収集 用 PC へ送信 (1/30s サ ンプリング) できる無 線式温度計測ツールを 開発した,上記の連写 とほぼ同等のサンプリ ングで両者は同程度の 応答性である. 図2に その外観を示す. エン ドミル中心軸にシャン ク部側から放電加工に より工具先端付近まで


Fig.2 Monitoring tool appearance

穿孔を行ったのち熱電対を挿入して加工中の工具内部温度を モニターした.

3. モニター結果および考察

3.1 モニター画像の解析

工具直径 10mm, 切削 速度 45m/min, 送り量 0.05mm/tooth, 軸方向 切込み 12mm, 径方向 切込み 0.6mm,被削材 SUS310(寸法 100×100 ×50mm), クーラント Dry の条件におけるモ ニター画像を図3に示 す. 工具 (OSG 製 WXL-EMS) は,4 枚刃, ねじれ角 30°, TiAIN

(同志社大)

正 青山 栄一

Fig.3 Monitoring picture of end-milling

コートである. 図 3 より, エンドミル刃部からシャンク部に かけての温度分布や光沢のある加工面に反射した加工点に近 いエンドミル裏側の温度なども, それぞれの放射率の変化考慮 しながら評価を遂行すれば解析が可能であることがわかる.

3.2 蓄熱による工具温度の上昇

図 4 に, 切削速度 45m/min(工具直径 6mm, 4枚刃, 工具突 出し長さ L/D=3),送 り量 0.05mm/tooth, 軸方向切込み 12mm, 径方向切込み 0.6mm とした時のモニター 温度(各時間の画像中 で,エンドミル刃部に おける最高温度およ び熱電対によるエンド ミル内部の温度計測結

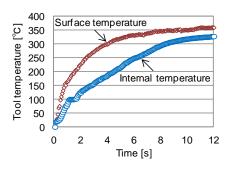


Fig.4 Temperature and cutting time

果) を示す. サーモグラフィの結果は、別途 FEM 解析の結果 と比較して、その妥当性の検証を済ませてある. エンドミル 刃部表面および内部の温度は加工開始直後から上昇し, 最高 温度はある一定値に収束する様子がわかる. またエンドミル 刃部表面と比較し, 内部の温度は加工熱源から少し遅れて熱 が伝わるため急激な上昇は見られないが、収束温度はほぼ同 程度まで上昇することが確認でき、妥当な結果であった.

4. 結言

エンドミル刃部の温度の解析および、シャンク部にわたる 工具表面温度分布の解析には赤外線サーモグラフィによる計 測が有効であると考えられる.一方,ウエットでの計測など も想定して無線式でサーモグラフィと同等のサンプリング能 力を有する温度計測ツールを開発した. その結果, 無線式温 度計測ツールによる温度計測も有効であることが示された.

5. 参考文献

1)山根, 関谷, 精密工学会誌, 70-3, pp.407-411(2004) 2)新堂, 児玉, 廣垣, 青山, 日本機械学会関西支部講演論文集, p.14-3, (2012)