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Abstract. We proposed the data-mining methods using hierarchical and non-hierarchical clustering 

methods to help engineers decide appropriate end-milling conditions. The aim of our research is to 

construct a system that uses clustering techniques and tool catalog data to support the decision of 

end-milling conditions for difficult-to-cut materials. We used variable cluster analysis and the 

K-means method to find tool shape parameters that had a linear relationship with the end-milling 

conditions listed in the catalog. We used the response surface method and significant tool shape 

parameters obtained by clustering to derive end-milling condition. Milling experiments using a square 

end mill under two sets of end-milling conditions (conditions derived from the end-milling condition 

decision support system and conditions suggested by expert engineers) for difficult-to-cut materials 

(austenite stainless steel) showed that catalog mining can be used to derive guidelines for deciding 

end-milling conditions. 

Introduction 

The demand for high-speed, high-efficiency, high-accuracy processing continues to grow due to the 

increasing need for quick machining and delivery of workpieces with a variety of complicated shapes. 

However, the processing and end-milling methods commonly used are not appropriate for many 

difficult-to-cut materials such as Ni-base superalloy, titanium alloy, and carbon fiber reinforced 

plastic, which are used extensively in aerospace. Such materials generally have high 

strength-to-weight ratios, high corrosion resistance, high strength retention ability at elevated 

temperatures, and low thermal conductivity. These characteristics can result in uneven tool wear and 

chatter vibration. Therefore, deciding the appropriate end-milling conditions is more difficult for 

difficult-to-cut materials than for other materials. There has been much research on the high-speed 

milling of these materials, and effective end-milling conditions [1], end-mill tool shapes [2], and 

processing methods have been reported [3]. Yamane and Sekiya [4] proposed a difficult-to-cut rating 

that can be calculated from the mechanical and thermal properties of the workpiece and used to 

estimate the difficulty of processing considering only the properties of the workpiece. However, it is 

still difficult to determine the appropriate end-milling conditions. Since there have been few reports 

of systematically obtained comprehensive information useful for determining appropriate end-milling 

conditions and processing methods, it is difficult to present standard end-milling conditions for 

difficult-to-cut materials. Even 
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though tool makers design tool shapes 

in much the same way, the end-milling 

conditions they recommend in their 

tool catalogs, which affect processing 

efficiency and cost, differ among 

makers due to differences in the 

coating base material coatings and 

edge angles they develop. There are 

thus no clear guidelines for deciding 

the end-milling conditions. A system 

for helping engineers decide the 

end-milling conditions would 

therefore speed up production and help 

reduce manufacturing costs. We 

previously 

proposed using data-mining of tool catalog data as part of a system supporting the decision of 

end-milling conditions [5]. Using end-milling conditions derived from this system, we 

experimentally validated the effect of combining hierarchical and non-hierarchical clustering 

methods for milling JIS SKD61 die steel [6]. This system is targeted at deciding the conditions for die 

machining. We have now developed a system using data mining that supports the decision of 

end-milling conditions for difficult-to-cut materials. Testing using JIS SUS310S austenite stainless 

steel under end-milling conditions derived from the system showed that catalog mining can be used to 

derive guidelines for deciding end-milling condition. 

Data mining 

The data-mining process starts with data acquirement, selection, and cleansing. An analyst checks the 

data directly and removes any noisy data on the basis of judgment and experience. This removal of 

inaccurate or corrupt data is done in the data-cleansing step, which is said to account for the largest 

portion (70 to 80%) of the effort involved in the data-mining process. 

Catalog-mining process. In the work reported here, we used end mill catalog data as the database. 

Such data are typically obtained on the basis of trial and error by cutting-tool makers during testing to 

identify appropriate end-milling conditions. These data are thus both sophisticated and numerical 

meaning that we could omit a large part of the data cleansing. The flow of the catalog-mining process 

we used is shown in Fig. 1. The algorithms used for the clustering and statistical analysis are 

described in detail elsewhere [5-6]. We used the K-means method, a non-hierarchical clustering 

method, to make clusters and extract attributes from the viewpoint of end mill tool shapes. This was 

done using Visual Mining Studio software (Mathematical Systems, Inc.). We used variable cluster 

analysis, a hierarchical clustering method, to visualize the data structure using tree diagrams, and we 

used principal component regression (PCR), to quantify the correlation between the objective and 

predictor variables. We developed equations for deciding the end-milling conditions by using the 

response surface method, which uses significant variables derived from variable cluster analysis and 

PCR. Several end-milling experiments were conducted to validate the equations.  

Analysis results and discussion 

Acquisition of data. The tool used was square end mills listed in the catalog of the largest tool maker 

in Japan. The catalog has a total of 825 pieces of data on cemented carbide square end mills related to 

their end-milling conditions for difficult-to-cut materials. For our database, we assumed a mill 

diameter of 0.1-25 mm. The catalog contains mill diameter D, cut length l, overall length L, shank 

diameter Ds, number of flutes z, shape data such as helix angle θ, and the tool coating material. 

Equivalent diameter De was calculated in terms of the number and weight of the flutes [5-6]. All the 
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Fig. 1 Catalog-mining process. 
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shape variables were assumed to be predictor variables. These predictor variables were selected so 

that engineers could quickly determine the appropriate end-milling conditions from the shape of the 

square end mills. The work 

materials were composed of 

Ni-base superalloy (Inconel 718) 

(17%), titanium alloy (Ti-6Al-4V) 

(43%), and austenite stainless steel 

(JIS SUS304 and SUS316) (40%) 

up to HRC35-45 hardness. 

Hardness was used as a predictor 

variable. As criterion variables, we 

used the recommended end-milling 

conditions [spindle revolution S  

(rpm), table feed speed F (mm/min), and depth of cut] listed in the catalog. The values for these 

variables were input into the NC program. We therefore made the criterion variables cutting speed V 

(m/min), feed rate f (mm/tooth), and axial depth of the cut Ad (mm). These are important processing 

condition factors in side milling and slotting. V and f are defined as V=πDS/1000 and f =F/(S･z), 

respectively. We further used the radius depth of the cut Rd (mm) as a criterion variable for side 

milling. 

Modeling of cutting tool shape. Figure 2 shows a diagram of an end mill, the results obtained with 

the K-means method, the distribution map for each cluster for l/De against L/l, and the representative 

shape of each cluster. We used three variables, L/l, l/De, and Ds/De, to visualize the shape of the end 

mill. Once these variables were fixed, we could decide on the external shape of the square end mill. 

We set the number of clusters to five. The larger the L/l and Ds/De, the smaller the outside diameter. 

The smaller the l/De, the greater the number of flutes z. Clusters 4 and 5 consisted of small-diameter 

shaped end mills, and Clusters 1, 2, and 3 consisted of general rod-shaped end mills. The amount of 

data for Cluster 2 accounted for 53% of the total data. End mills that can conduct high-speed cutting 

are included in this cluster. These end mills have 4 or 6 flutes, more than other end mills. These results 

are consistent with those previously reported [5-6]. Furthermore, each cluster could be divided into 

ones of two types of processing: side milling and slotting. 

 

 

 

 

 

 

 

 

 

 

 

      

     Fig. 3 Dendrogram of Cluster 2 for side milling.               Fig. 4 Calculation result of PCR 

 

Predictor variable selection. We applied variable cluster analysis and PCR to each cluster classified 

by the K-means method from the viewpoint of end mill shape. Example results of variable cluster 

analysis and PCR for Cluster 2 for side milling (typical shape) are respectively shown in Figs. 3 and 4. 

From Fig. 3 (a dendrogram), we can visualize the correlation between variables by focusing on the left 

clusters, which are marked off with a dashed line (cutting line). The closer the clusters combine to the 

left, the higher the correlation. The variables for side milling for Cluster 2 are divisible into three 

clusters: (D, Ds, L, and l), z, and (θ, HRC). The (D, Ds, L, and l) cluster correlates with the end mill 
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shape parameter. Helix angle θ is correlated with HRC. Number of flutes z is a sovereign variable. 

From Fig. 4, we see that cutting speed V has a positive relationship with z (Cp, 0.45) and a negative 

relationship with θ and HRC (Cp, -0.22). While the axial depth of cut Ad has a positive relationship 

with the end mill shape parameters (Cp, 0.38) and a negative relationship with θ and HRC (Cp, -0.35), 

Rd has no relationship with any of the predictor variables. These results show that Rd does not depend 

on the tool shape parameter and HRC listed in the tool catalog. Using these figures, we selected the 

predictor variables which used for the end-milling condition decision equations.  

Derivation of end-milling condition decision equations. We derived ternary second-order 

polynomial response surface equations for deciding the end-milling conditions by using the variables 

determined to be significant using the response surface method, a practical optimization method. The 

ones for Cluster 2 for side milling are shown below. 
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To evaluate the accuracy of a prediction model, 

we have to compare the residual per unit 

freedom. In general, adjusted R-squared (R
2

ad) is 

used for judging accuracy. We used a T-test of 

the regression coefficient to determine the 

significance of each coefficient. On the basis of 

the results, the model was optimized by adding or 

deleting coefficients through stepwise 

elimination. Significant variables used in each 

equation are D, l, z, θ, and HRC. These variables 

are also significant in deciding the square 

end-milling conditions for die machining [5-6]. 

Application of the adjusted R-squared results 

made each equation more accurate than ones 

derived from multiple regression analysis. This 

was especially true for V and f, which have 

velocity dimensions and showed low determination coefficients in 

previous studies [5-6]. The values from catalog mining are plotted against those estimated from the 

catalog cutting speed in Fig. 5. The catalog-recommended V can be divided into two ranges: 20-40 

m/min for Inconel718 milling and 30-150 m/min for JIS SUS304 and Ti-4Al-6V milling. As shown in 

Fig. 5, the V given by Eq. (3) is 10-70 m/min for Inconel718 milling and 10-150m/min for JIS 

SUS304 and Ti-4Al-6V milling. When the estimated value was ~80 m/min, the range and data 

number of catalog recommended condition are widest and largest in other estimated value. Therefore, 

we have to validate the utility of the estimated values in this range.  

Experimental validation of equations 

End-milling conditions and experimental set-up. The cutting force, cutting temperature, 

workpiece ductility, and chip treatability are generally important as evaluation indicators of milling 

difficulty [4]. Engineers often decide the end-milling conditions and processing method on the basis 

of cutting force and temperature. To validate our equations, we conducted milling experiments under 

conditions: 
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Table 1 End-milling conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Tool shape parameter of square end mill. 

derived from data mining (mined conditions) and under standard end-milling conditions suggested by 

engineers (standard conditions). The workpiece was a 100×100×50 mm sheet of heat-resistant steel 

(JIS SUS310S, 25Cr-20Ni, HRC35). We used a TiAlN-coated φ10 general-purpose square end mill 

that catalog recommended and appropriate end-milling conditions for JIS SUS310S are unknown. 

The tool shape is shown in Fig. 6. This end mill belongs to Cluster 2. Table 1 lists the mined 

conditions obtained by substituting the tool parameters into Eqs. (1)-(4) and the standard conditions. 

The Ad under the mined conditions was 25% less than under the standard ones. The material removal 

rate (MRR, cm
3
/min) is defined as MRR = F･Ad･Rd/1000. The experiments involved processing 

(down-cut in one pass direction) a flat surface. The machine tool was an ACCUMILL4000 (made by 

Mori Seiki). The tool extension was 30 mm. The cuttings were made under dry air and minimal 

quantities of lubricant (MQL) (Blube LB-1 Fujigiken Inc. 6cc/h) condition. An infrared radiation 

thermometer with thermographic resolution of 0.03 K (H2640 NEC/Avio) was used to measure the 

cutting temperature. The emissivity of the measurement surface was set to 0.43 for dry air cutting and 

to 0.80 for MQL cutting. The cutting speed was varied by cutting it in half and doubling it for each 

condition (see Table 1).  

Results and discussion. Fig. 7 shows a 

thermal image of dry milling under 

standard conditions. From such images, we 

can photographically analyze not only the 

blade temperature of the end mill and the 

temperature increase of the shank part and 

workpiece but also the temperature and fly 

appearance chip. Fig. 8 shows the 

maximum cutting temperature as shown in 

Fig. 7 for the different end-milling 

conditions. We can see that maximum 

temperature can be reduced 30 to 50% by  

using MQL under both conditions. Under the standard conditions, the maximum  

temperature and thermal gradient due to saturation were higher than under the mined conditions. 

Under the mined conditions for V set to 170 m/min, the maximum temperature did not rise rapidly and 

was almost the same as for V set to 85 m/min. However, chatter vibration arose under the mined 
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                            (a) Mined conditions                                             (b) Standard conditions 

Fig. 8 Maximum temperature for different end-milling conditions. 

 

conditions for V set to 170 m/min for both the dry 

air and MQL condition. Therefore, these 

conditions are not practical. No wear was observed 

on the end mill blade under the mined conditions 

except for V set to 170 m/min. Figure 9 shows the 

relationship between the saturated maximum tool 

temperature in Fig. 8 and MRR for the different 

end-milling conditions. The maximum 

temperature differed greatly between the mined 

and standard conditions at each MRR. The use of 

MQL effectively reduced the cutting temperature 

at each MRR. Near the crossover point of the 

dashed and solid MQL curves, the maximum 

temperature for a specific MRR value can be 

reduced by choosing more effective end-milling 

conditions. 

Conclusion 

Catalog mining, which is an application of hierarchical and non-hierarchical clustering methods can 

be used as part of a decision methodology for difficult-to-cut end-milling conditions. We found that 

catalog mining can be used to derive guidelines for deciding end-milling conditions. Measurement of 

the milling temperature using an infrared radiation thermometer and examination of the analytical 

method of the thermal imaging confirmed that using an MQL condition reduced the maximum tool 

temperature during milling. The guidelines derived from catalog mining are found to be more 

effective under a severe condition such as dry air coolant. 
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